
Group two Project Report

Hossein Goli, Bahar Dibaeinia, Siavash Rahimi, Mahdi GhaemPanah, Ali Ansari
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

I. GHS ALGORITHM

In the first part of the project, we introduce GHS algorithm,
a graph-based unsupervised method for getting adversari-
ally robust for getting image segmentations. First, we will
briefly discuss the preliminaries related to graph theory and
unsupervised local clustering algorithms.

A. Preliminaries

1) DSU Data Structure: This data structure provides the
following capabilities. We are given several elements, each
of which is a separate set. A DSU will have an operation to
combine any two sets, and it will be able to tell in which set
a specific element is. The classical version also introduces a
third operation, it can create a set from a new element.

Thus the basic interface of this data structure consists of
only three operations:
makeset(v) - creates a new set consisting of the new

element v unionsets(a, b) - merges the two specified sets (the
set in which the element a is located, and the set in which the
element b is located) findset(v) - returns the representative
(also called leader) of the set that contains the element v.
This representative is an element of its corresponding set.
It is selected in each set by the data structure itself (and
can change over time, namely after unionsets calls). This
representative can be used to check if two elements are part
of the same set or not. a and b are exactly in the same set, if
findset(a) == findset(b). Otherwise, they are in different
sets.

2) Unsupervised Clustering Algorithms: Unsupervised
clustering algorithms, such as K-means, hierarchical cluster-
ing, and DBSCAN, uncover hidden patterns within data with-
out the need for labeled examples. These algorithms partition
data points into distinct groups based on similarity measures,
enabling insights into natural structures and relationships. By
iteratively organizing data into clusters, they facilitate ex-
ploratory analysis, anomaly detection, and data compression,
playing a crucial role in various fields like customer seg-
mentation, image processing, and anomaly detection. Despite
their autonomy from labeled data, fine-tuning parameters and
interpreting results remain pivotal challenges in ensuring the
accuracy and interpretability of clustering outcomes.

B. SuperPixel Segmentation

Superpixel segmentation algorithms offer a powerful ap-
proach to partitioning images into perceptually meaningful re-
gions. Unlike traditional pixel-based methods, these algorithms
group pixels into coherent and homogeneous clusters, known
as superpixels, based on color, texture, and spatial proximity.
By reducing the complexity of image data while preserving
essential features, superpixel segmentation facilitates efficient
processing tasks such as object recognition, image compres-
sion, and boundary delineation.

One of the popular techniques in this domain is the Simple
Linear Iterative Clustering (SLIC) algorithm. SLIC efficiently
generates superpixels by iteratively assigning each pixel to
the nearest cluster centroid in a feature space that combines
color and spatial information. This approach ensures spatial
coherence while maintaining computational efficiency, making
it suitable for real-time applications.

Superpixel segmentation algorithms find wide application
across various domains, including medical imaging, remote
sensing, and computer vision. They enable more robust and
accurate analysis by providing a compact representation of
image content and reducing computational overhead. However,
challenges such as parameter tuning and boundary adherence
remain areas of ongoing research to further enhance the effec-
tiveness of superpixel segmentation in diverse applications.

The method we used is as follows:
The Simple Linear Iterative Clustering (SLIC) algorithm

is a popular method for superpixel segmentation, offering a
balance between computational efficiency and segmentation
quality. SLIC operates by iteratively grouping pixels into com-
pact and visually coherent clusters, known as superpixels. Let’s
delve into its mathematical underpinnings and operational
steps:

1) Initialization: SLIC begins by initializing cluster cen-
ters in a regular grid pattern over the image. The spacing
between these initial cluster centers, termed as the
”step size” or ”superpixel size,” is a crucial parameter
affecting the segmentation result.

2) Assignment of Pixels to Clusters: For each cluster
center, SLIC assigns nearby pixels to that cluster based
on both spatial proximity and color similarity. This as-
signment is governed by a distance metric in a combined

color-space and spatial domain. The distance metric can
be formulated as:

D = dcolor +
m

S
· dspatial

Here, dcolor represents the color distance between a pixel
and a cluster center in a suitable color space (e.g.,
LAB or RGB). dspatial denotes the Euclidean distance
between pixel coordinates and cluster center coordinates.
S represents the step size (superpixel size), and m is a
constant controlling the influence of spatial distance on
the overall distance calculation.

3) Update Cluster Centers: After assigning pixels to
clusters, SLIC updates the cluster centers by computing
the mean color and position of all pixels assigned to
each cluster. This step ensures that the cluster centers
converge towards the true boundaries of image regions.

4) Iterative Refinement: SLIC iterates the assignment
and update steps until convergence criteria are met.
Typically, the algorithm converges after a fixed number
of iterations or when the change in cluster centers falls
below a predefined threshold.

5) Post-processing: Optionally, a boundary refinement step
may follow to improve the coherence of superpixel
boundaries, ensuring smoother segmentation results.

Benefits and Applications: This method offers several
advantages, including computational efficiency, parameter con-
trol, and high-quality segmentation results. Its ability to gener-
ate compact superpixels makes it well-suited for applications
such as image segmentation, object tracking, and image com-
pression.

Fig. 1: Original Image

Fig. 2: Partioned-Average Image

Fig. 3: Partioned-Average Image with boundaries

Fig. 4: Graph created using our method

C. Proposed Method

We propose a novel method for expanding locally group
pixels to global groups. This method can be interpreted for
many applications such as segmentation, finding background
from the foreground, finding more global superpixels, Tiling
images, and so on. In our method, we first find local clusters
within an image as shown in Fig. 3. Then we propose the
average for each group to get Fig. 2 which is a representation
for each group using its mean color. We note that each group
had similar pixels thus doing so is reasonable. The novelty
of our idea is that we transform the image at this stage to a
Graph and use algorithms from Graph Theory to maximize
our objective function. The created graph vertices are the local
cluster centers and each edge is between neighboring grouped
pixels and its weight is a f(x, y, r, g, b) in which the simplest
case would simply be a 3-dimensional color space. we note
that using different f will result in different performance for
different applications and leave it as a future work.

The next step of our method is to join these different sets
in a graph effectively. A famous approach to this problem is
using the Disjoint-set data structure which was discussed in
the previous parts. Note that these steps can and should be
done iteratively to find better and better global groups at each
time step and thus a scheduler is required to relax the DSU
joining threshold over time. You can find the result of our
method in

It is worth noting that our method is robust to noise. The
theoretical reason for it is simple. each time we average noise
in these clusters, their variance is divided by a factor of

√
A

(size of the cluster). Thus in each iteration, the perturbation is
becomes weaker and weaker and our method initially doesn’t
need to find large clusters and finding just the right amount

Fig. 5: GOur proposed method for segmentation

Fig. 6: Our proposed method for segmentation

of small yet local clusters will give it a good starting point.

II. TINY NERF

We have implemented a simplified version of Neural Ra-
diance Fields, a method that achieves state-of-the-art results
for synthesizing novel views of complex scenes by optimizing
an underlying continuous volumetric scene function using a
sparse set of input views. The algorithm represents a scene
using a Multilayer Perceptron network, whose input is the
spatial location (x, y, z) and whose output is the volume
density and emitted radiance at that spatial location.

A. Background

Advancements in 3D scene representation have seen a sig-
nificant shift from traditional geometric representations, such
as meshes and voxel grids, to more advanced neural network-
based approaches. Notably, Park et al.’s DeepSDF [1] and
Mescheder et al.’s Occupancy Networks [2] have pioneered in
demonstrating the effectiveness of implicit neural representa-
tions for encoding complex geometrical details. These methods
utilize Multi-Layer Perceptrons (MLPs) to model continuous
volumetric fields, offering enhanced precision in rendering
intricate scenes.

In the realm of view synthesis, earlier techniques pri-
marily relied on light field interpolation [3], [4]. Another

(a) Aversarial attack on SegNet

(b) Our method being robust to adversarial perturbations

Fig. 7: Creating subfigures in LATEX.

class of methods use volumetric methods for photorealistic
view synthesis from input RGB images realistically represent
complex shapes and materials, are suitable for optimization,
and produce fewer artifacts than mesh-based methods. Early
methods directly colored voxel grids [5] using observed im-
ages, while recent approaches train deep networks on large
datasets to predict and render volumetric representations from
input images [6].

B. Neural Radiance Field Scene Representation

In the original NeRF approach, a continuous scene was
represented as a 5D vector-valued function. The input of the
function is a 3D location x = (x, y, z) and 2D viewing direc-
tion (θ, ϕ), which is typically represented by a 3D Cartesian
unit vector d. The output of the function is an emitted color
c = (r, g, b) and volume density σ. However, in the simplified
version, Tiny NeRF, the input is only the 3D location. This is
approximated by an MLP network Fθ : (x) → (c, σ), where x
represents the 3D location, and the output is the emitted color
c and volume density σ.

Positional Encoding: Deep networks are biased towards
learning lower frequency functions [7]. Mapping the inputs
to a higher dimensional space using high frequency functions
before passing them to the network enables better fitting of
data that contains high frequency variation. We reformulate
Ftheta as a composition of two functions Fθ = F ′

θ ◦ γ. Here
γ is a mapping from R into a higher dimensional space R2L,
and F ′

θ is the a regular MLP.
γ(p) = (sin(20πp), cos(20πp), ..., sin(2L−1πp), cos(2L−1πp))
We set L = 6. This function is applied separately to each of
the three coordinate values in x.

Model: The MLP F ′
θ consists of 4 fully-connected layers

with ReLU activations and 256 channels per layer. Its input is
the 39-dimensional positional encoding of the 3D coordinate,
x.

C. Volume Rendering with Radiance Fields

We render the color of any ray passing through the scene
using principles from classical volume rendering [8]. The
volume density σ(x) can be interpreted as the differential
probability of a ray terminating at an infinitesimal particle at
location x. The expected color C(r) of camera ray r(t) = o+td
with near and far bounds tn and tf is:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t))dt

where T (t) = exp(−
∫ t

tn
σ(r(s))ds). We numerically estimate

this continuous integral using quadrature. We partition the
interval [tn, tf] into N evenly-spaced bins and draw one sam-
ple uniformly at random from within each bin and use these
samples to estimate C(r) with the quadrature rule discussed in
the volume rendering review by Max [9].

Ĉ(r) =

n∑
i=1

Ti(1− exp(−σiδi))ci

where Ti = exp(−
∑i−1

j=1 σjδj).

D. Implementation and Results

We optimize a separate neural continuous volume represen-
tation network for each scene. This requires only a dataset of
captured RGB images of the scene, the corresponding camera
poses and intrinsic parameters, and scene bounds. At each
optimization iteration, we randomly select an image from our
dataset and sample N = 64 points from its camera rays,
corresponding to each pixel. We then use the described volume
rendering procedure to render the color of each ray from our
samples. Our loss is simply the total squared error between
the rendered and true pixel colors:

l =
∑
r∈R

||Ĉ(r)− C(r)||22

R is the set of rays of the image and C(r), Ĉ(r) are the ground
truth and volume predicted RGB colors for ray r respectively.
We use the Adam optimizer with a learning rate of 5× 10−3.
Our dataset is Tinynerf Lego Example. The optimization for a
single scene typically take around 1000 iterations to converge
on a single T4 GPU (Fig. 8).

(a) 175th Iteration

(b) 325th Iteration

(c) 650th Iteration

(d) 975th Iteration

Fig. 8

REFERENCES

[1] Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.:
DeepSDF: Learning continuous signed distance functions for shape
representation. In: CVPR (2019)

[2] Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.:
Occupancy networks: Learning 3D reconstruction in function space. In:
CVPR (2019)

[3] Cohen, M., Gortler, S.J., Szeliski, R., Grzeszczuk, R., Szeliski, R.: The
lumigraph. In: SIGGRAPH (1996)

[4] Davis, A., Levoy, M., Durand, F.: Unstructured light
elds. In: Eurographics (2012)

[5] Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving.
International Journal of Computer Vision (2000)

[6] Flynn, J., Broxton, M., Debevec, P., DuVall, M., Fyffe, G., Overbeck, R.,
Snavely, N., Tucker, R.: DeepView: view synthesis with learned gradient
descent. In: CVPR (2019)

[7] Rahaman, N., Baratin, A., Arpit, D., Dr. axler, F., Lin, M., Hamprecht,
F.A., Bengio, Y., Courville, A.C.: On the spectral bias of neural networks.
In: ICML (2018)

[8] Kajiya, J.T., Herzen, B.P.V.: Ray tracing volume densities. Computer
Graphics (SIGGRAPH) (1984)

[9] Max, N.: Optical models for direct volume rendering. IEEE Transactions
on Visualization and Computer Graphics (1995)

